1. Чтo тaкoe нeпoдрeссoрeннaя мaссa?
Пoнять, чтo тaкoe нeпoдрeссoрeннaя масса, несложно: это масса, не поддерживаемая «рессорами» — ну или другими несущими элементами подвески. То есть, все, что несет на себе подвеска – это подрессоренная масса: в нее входят кузов, рама, силовой агрегат и прочие элементы «верхней части» автомобиля. Все же, что находится «ниже амортизаторов и пружин» – это неподрессоренная масса, причем сами несущие элементы подвески тоже добавляют к неподрессоренной массе часть веса.
В число составляющих неподрессоренной массы входят диски, шины, тормозные механизмы, ступичные подшипники и сами ступицы, приводные валы, полуоси, ШРУС, балки и мосты подвески, а также сами пружины и амортизаторы – и рессоры, конечно. К слову, в английском языке термин «неподрессоренная масса» звучит как «unsprung mass» – то есть, «неподпружиненная масса», что несколько проще для понимания.
2. На что влияет неподрессоренная масса?
Чтобы полноценно ответить на этот общий вопрос, стоит понимать, что неподрессоренная масса – это не монолитный груз, подвешенный снизу на автомобиль, а сочетание разных деталей и элементов конструкции, выполняющих разные функции. Однако в целом она влияет на следующие характеристики автомобиля:
— плавность хода;
— устойчивость и стабильность автомобиля;
— расход топлива и динамические характеристики.
3. Как неподрессоренная масса влияет на плавность хода?
Начнем с простого: неподрессоренная масса как таковая влияет на плавность хода. Объяснить это просто: при наезде на дорожную неровность колесо и другие элементы неподрессоренной массы поднимаются вверх, передавая определенное усилие. Оно частично гасится элементами подвески, а частично передается на кузов – и от соотношения массы кузова и неподрессоренной массы зависит то, насколько ощутимым будет передающееся усилие. Условно говоря, если стукнуть два мяча друг о друга, сильнее сдвинется тот, что будет легче. Аналогичная ситуация и здесь: чем меньше будет неподрессоренная масса относительно подрессоренной, тем меньше будет ощущаться усилие, передаваемое ей на кузов. Ну а изменять это соотношение можно только за счет уменьшения неподрессоренной массы, поскольку увеличивать ради этого массу самого автомобиля никто не станет – работа идет как раз над обратным.
Пример неоптимального соотношения неподрессоренной и подрессоренной масс можно отследить на примере пикапов. У них грузовой отсек рассчитан на перевозку сравнительно больших грузов, и когда кузов пуст, неподрессоренная масса оказывает заметно большее влияние, чем могло быть в идеальных условиях: в результате автомобиль «козлит», подпрыгивает на неровностях и не обеспечивает большого комфорта. Когда же кузов загружен, подрессоренная масса вырастает, и ее соотношение с неподрессоренной становится больше – а значит, улучшается комфорт и плавность хода.
3. Как неподрессоренная масса влияет на устойчивость и стабильность автомобиля?
Эти показатели напрямую проистекают из предыдущего объяснения о воздействии неподрессоренной массы на подрессоренную и их взаимного отношения. Все просто: в момент наезда на препятствие неподрессоренная масса движется вверх, и колесо разгружается, а то и вовсе отрывается от дороги. Чем выше при этом неподрессоренная масса относительно подрессоренной, тем дольше колесо будет находиться в таком «подвешенном» состоянии, и наоборот – чем тяжелее автомобиль относительно неподрессоренных масс, тем он быстрее «прижимает» их обратно к дороге.
Продолжая пример с пикапами, можно провести аналогичную параллель. Пустой пикап, двигаясь по неровной дороге, будет больше подпрыгивать на неровностях, и в повороте эти вертикальные колебания будут заметно влиять на устойчивость автомобиля: корму будет переставлять, сносить или уводить в сторону. Если же заполнить кузов грузом, вертикальные колебания кузова снизятся, и автомобиль будет увереннее вести себя в повороте, заметно меньше разгружая колеса на неровностях: это значит, что вырастут показатели устойчивости, стабильности и, в какой-то мере, управляемости.
5. Как неподрессоренная масса влияет на расход топлива и динамические характеристики?
На эти показатели более всего влияет не вся неподрессоренная масса как таковая, а прежде всего элементы, преобразовывающие крутящий момент в движение – шины, диски и приводные валы, которые в случае с зависимой подвеской также считаются частично неподрессоренной массой. Здесь действует простой принцип: более тяжелое колесо или вал труднее раскрутить и обеспечить ему постоянное вращение. Поэтому как приводные валы, так и колеса стараются сделать легкими, сохранив показатели прочности и надежности.
В случае с валами это можно иллюстрировать появлением карбоновых карданных валов, ну а колеса как один из самых легкозаменяемых элементов конструкции – буквально бесконечное поле для тюнинга и улучшения. Здесь и легкосплавные и кованые диски, и диски из карбона, и более энергоэффективные шины с меньшей массой и сниженным сопротивлением качению.
Взаимосвязь колес с расходом топлива и динамическими характеристиками очевидна: чем легче колесо, тем проще и быстрее его будет раскрутить – соответственно, на это потребуется меньше затрат энергии и меньше времени, что означает меньший расход и лучшую динамику автомобиля.
6. Какой должна быть неподрессоренная масса?
Обобщая и подытоживая все вышесказанное, можно сделать главный вывод: усилия инженеров направлены на максимальное уменьшение неподрессоренной массы. Увеличение отношения подрессоренной и неподрессоренной массы нельзя осуществить за счет увеличения подрессоренной массы, а это значит, что единственный способ реализовать желаемое отношение – уменьшить неподрессоренную. Именно поэтому в современных автомобилях мы видим алюминиевые подвески, кованые диски, независимые подвески, исключающие из неподрессоренной массы балки, мосты и карданы, и другие технические решения, направленные на ее снижение.